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PANEL DATA EXAMPLES

Tuesday, March 6, 12



Panel data examples
• Active workers followed term after 

term. Labor Force Survey.
– Calculation of the unemployment rate.

• Families’ purchasing decision followed 
over multiple weeks.
– Consumer Expenditure Survey.

• Firms’ share prices/earnings/
accounting measures.
– Compustat + Execucomp.
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Panel data notation
• i: individual, firm, “unit” of analysis.
• t: time period. Either minute, day, 

hour, week, year, etc.
• Sometimes individuals/firms are 

grouped into units.
– J(i,t): firm of employee i at time t.
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Cross section
vs longitudinal data analysis

• In cross-sectional regressions, 
individuals differ both in their 
covariates and in constant 
unobservable dimensions.

• In longitudinal regressions, where 
changes in the outcome variable are 
related to changes in the covariates, 
the non time-varying unobservables 
are captured.
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Usefulness of panel data analysis

1. Capture non-time varying 
unobservables.

2. Correct for individual or time-specific 
unobserved shocks.

3. Estimate non-time varying 
unobservables, their correlation with 
observables, their significance.

8
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FIXED EFFECTS ESTIMATION
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yi = Xi� + i · ↵i + "i

yi,t = x

0
i,t� + ↵i + "i,t

Fixed effects estimation

• with xit a K-vector of observables.
• Stacking observations together:

• yi: T-vector of dependent variable.
• Xi: TxK matrix of covariates for individual i.
• i: a T-vector of ones.

• Fixed effect αi captures the constant unobservables: solution 
for the omitted variable bias, if the omitted variable is 
constant.
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Balanced panel data
• Balanced panel data:

– Same number of time periods T of observation for each individual 
i=1,2,..,N.

• Unbalanced panel data:
– At least one individual is observed for a different number of time 

periods. 
– Ti : number of observations for individual i.

• Checking in Stata: using xtset.

• If Ti is random (non correlated with epsilon i), then the 
unbalancedness is not an issue. Most results of this session apply.

• If Ti is nonrandom, there is either:
– endogenous entry into the dataset.
– Or endogenous exit (attrition) out of the dataset.

• Then specific theory needs to be developed
(out of the scope of the current session).

11
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y = X� +D↵+ "

Matrix form

• X is an NT times K matrix.
• D is an NT times N matrix, the design matrix.
• alpha: an N-vector of fixed effects.
• The constant is either in X, and then D drops one 

effect, or the constant is in D, and then X has no 
constant. The former is the typical convention.

12
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OLS Dummy variables 
• The simplest way to estimate is to include one 

dummy variable per individual.
• Requires that E(εi|i,xit) = 0.
• In Stata: xi: regress consumption income i.individual 
• But:
– It is computationally very costly: the number of 

variables is K + the number of individuals.
• Inverting the variance covariance matrix is very 

costly.
– The consistency of the estimator of beta cannot 

be proved for N-> infinity as the number of 
variables also tends to infinity.
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Transformations
• Trick is to transform the regression to 

make it (i) simpler to estimate (ii) 
simpler to prove the consistency of the 
estimator of beta.

1. first difference
2. within difference
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Assumptions
• Strict exogeneity
– E(εit | xi1 ,..., xiT )=0
– Note the difference with the standard A3 

in OLS.
• Homoskedasticity (in this session, but 

can be lifted) A4.
• And of course A1, A2.

15
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yi,t � yi,t�1 = (xi,t � xi,t�1)
0
� + "i,t � "i,t�1

First-differenced estimator

• Note that strict exogeneity implies that A3 is 
satisfied for this first-differenced regression.

• Noting ∆ the first-differenced estimator.

• In vector form.

16
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bW = (X 0�0�X)�1X 0�0�Y

First-differenced estimator

• First-differenced estimator is CAN under strict 
exogeneity.

• However it is not BLUE as first-differencing 
introduces AR correlations between residuals.

• Write the best estimator as an exercise.
17
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yi,t � yi,· = (xi,t � xi,·)� + "i,t � "i,·

Wyi = Wxi� +W"i

Within estimator

• Notice again that strict exogeneity implies that A3 is 
satisfied for the within regression.

• Again, noting W the within transformation.
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Within estimator of β

• The within estimator bw is a CAN estimator of β 
under strict exogeneity (and other maintained 
assumptions).

• However notice that bw is not BLUE. The most 
efficient estimator is the GLS estimator (rarely used, 
but write it as an exercise).

19

bW = (X 0W 0WX)�1X 0W 0WY
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Implementation
• xtset individual time
• xtreg y x1 ... xK, fe

for the within transformation
• xtreg y x1 ... xK, fd

for the first-differenced transformation

• The two estimators should not be 
statistically different.

20
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Asymptotic equivalence
• Under the assumption of strict 

exogeneity, both estimators are 
consistent estimators of beta.
– plim bwithin = plim bfd.

• If the strict exogeneity assumption is 
violated, then the 2 estimators differ 
asymptotically.

• Except for T=2, where they are equal 
for any dataset. (prove this)

Tuesday, March 6, 12



A2 Full rank assumption
• If a variable does not vary over time, 

then its first-difference or its within 
transformations are zero, and the 
effect of the variable cannot be 
estimated.

• A2 requires (X’W’WX) or (X’Δ’ΔX) to be 
invertible, or (for OLS dummy variable 
estimator), no vector in X to be 
perfectly correlated with D.

22
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Effect of constant covariates
• 2 step regression:
– Estimate the fixed effects model.
• xtreg y x1 ... xK , fe

– Predict the fixed effects.
• predict effect, d

– Regress the predicted fixed effects on the 
constant covariates.
• regress effect z1 ... zK .

• But!
– this assumes that z1 ... zK are orthogonal to the 

non time-varying unobservables
– we never assumed that x1 ... xK was orthogonal 

to the effect.
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Do not
• Perform the transformation yourself 

and report the standard errors of the 
regression.
– The s.e.s would be wrong.

• Rather, let stata do the correction on 
the standard errors for you.

24
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IV regression and fixed effects

• IV estimation can be combined with a 
fixed effect regression.

• IV will take care (if valid) of the time-
varying unobservables.

• Hence IV needs to be time varying.
• Stata command xtivreg/xtivreg2.
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Fixed effects regression and 
measurement error

• Fixed effects regression tends in 
general to magnify measurement error.

• In the first-differenced estimator:
– The variance of the first-differenced 

transformation is typically smaller than 
the variance of the levels. Exercise.

• In the within estimator:
– The variance of the within-transformed 

covariates is smaller than the original 
variance. Exercise.
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RANDOM EFFECTS 
ESTIMATION
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yi,t = x

0
i,t� + (↵+ ui) + "i,t

Random effects estimation

• where ui is an iid draw from a normal 
distribution with mean α and with 
variance σu2.

• The constant is either in x, or as the 
mean of u. 
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Random effects interpretation

• Captures unobserved shocks common 
to an individual.

• The shock for individual i is not 
estimated, only the variance of the 
shocks.

• The shocks are independent of the 
covariates.
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GLS estimation
• Random effects estimation amounts to GLS 

estimation. The variance-covariance matrix needs to 
be estimated.

• By block:

30
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in the introduction to this chapter.10 The payoff to this form is that it greatly reduces
the number of parameters to be estimated. The cost is the possibility of inconsistent
estimates, should the assumption turn out to be inappropriate.

Consider, then, a reformulation of the model

yit = x′
i tβ + (α + ui ) + εi t , (13-18)

where there are K regressors including a constant and now the single constant term is
the mean of the unobserved heterogeneity, E [z′

iα]. The component ui is the random
heterogeneity specific to the ith observation and is constant through time; recall from
Section 13.2, ui =

{

z′
iα − E [z′

iα]
}

. For example, in an analysis of families, we can view
ui as the collection of factors, z′

iα, not in the regression that are specific to that family.
We assume further that

E [εi t | X] = E [ui | X] = 0,

E
[

ε2
i t

∣

∣X
]

= σ 2
ε ,

E
[

u2
i

∣

∣X
]

= σ 2
u ,

E [εi t u j | X] = 0 for all i, t, and j,

E [εi tε js | X] = 0 if t "= s or i "= j,

E [ui u j | X] = 0 if i "= j.

(13-19)

As before, it is useful to view the formulation of the model in blocks of T observations
for group i, yi , Xi , ui i, and εi . For these T observations, let

ηi t = εi t + ui

and

ηi = [ηi1, ηi2, . . . , ηiT]′.

In view of this form of ηi t , we have what is often called an “error components model.”
For this model,

E
[

η2
i t

∣

∣X
]

= σ 2
ε + σ 2

u ,

E [ηi tηis | X] = σ 2
u , t "= s

E [ηi tη js | X] = 0 for all t and s if i "= j.

For the T observations for unit i , let % = E [ηiη
′
i | X]. Then

% =











σ 2
ε + σ 2

u σ 2
u σ 2

u · · · σ 2
u

σ 2
u σ 2

ε + σ 2
u σ 2

u · · · σ 2
u

· · ·
σ 2

u σ 2
u σ 2

u · · · σ 2
ε + σ 2

u











= σ 2
ε IT + σ 2

u iT i′T, (13-20)

10This distinction is not hard and fast; it is purely heuristic. We shall return to this issue later. See Mundlak
(1978) for methodological discussion of the distinction between fixed and random effects.
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GLS estimation
• Variance-covariance matrix.

• Estimator:

• And (after calculations)
31
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where iT is a T × 1 column vector of 1s. Since observations i and j are independent, the
disturbance covariance matrix for the full nT observations is

! =









" 0 0 · · · 0
0 " 0 · · · 0

...

0 0 0 · · · "









= In ⊗ ". (13-21)

13.4.1 GENERALIZED LEAST SQUARES

The generalized least squares estimator of the slope parameters is

β̂ = (X′!−1X)−1X′!−1y =
(

n
∑

i=1

X′
i!

−1Xi

)−1( n
∑

i=1

X′
i!

−1yi

)

To compute this estimator as we did in Chapter 10 by transforming the data and using
ordinary least squares with the transformed data, we will require !−1/2 = [In ⊗ "]−1/2.
We need only find "−1/2, which is

"−1/2 = 1
σε

[

I − θ

T
iTi′T

]

,

where

θ = 1 − σε
√

σ 2
ε + Tσ 2

u

.

The transformation of yi and Xi for GLS is therefore

"−1/2yi = 1
σε











yı1 − θ ȳı.

yı2 − θ ȳı.
...

yıT − θ ȳı.











, (13-22)

and likewise for the rows of Xi .11 For the data set as a whole, then, generalized least
squares is computed by the regression of these partial deviations of yit on the same
transformations of xi t . Note the similarity of this procedure to the computation in the
LSDV model, which uses θ = 1. (One could interpret θ as the effect that would remain
if σε were zero, because the only effect would then be ui . In this case, the fixed and
random effects models would be indistinguishable, so this result makes sense.)

It can be shown that the GLS estimator is, like the OLS estimator, a matrix weighted
average of the within- and between-units estimators:

β̂ = F̂withinbwithin + (I − F̂within)bbetween,12 (13-23)

11This transformation is a special case of the more general treatment in Nerlove (1971b).
12An alternative form of this expression, in which the weighing matrices are proportional to the covariance
matrices of the two estimators, is given by Judge et al. (1985).
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random effects models would be indistinguishable, so this result makes sense.)
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GLS and FGLS
• However neither the variance of the residuals nor 

the variance of the shocks are known.
• The first-differenced or the within transformation 

gives the standard deviation of the residual of the 
equation.

• The variance of the OLS regression gives the sum of 
the variance of the random effect and the sum of 
the variance of the residual.
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model with only a single overall constant, we have

plim s2
Pooled = plim

e′e
nT − K − 1

= σ 2
ε + σ 2

u . (13-30)

This provides the two estimators needed for the variance components; the second would
be σ̂ 2

u = s2
Pooled − s2

LSDV . A possible complication is that this second estimator could be
negative. But, recall that for feasible generalized least squares, we do not need an
unbiased estimator of the variance, only a consistent one. As such, we may drop the
degrees of freedom corrections in (13-29) and (13-30). If so, then the two variance
estimators must be nonnegative, since the sum of squares in the LSDV model cannot
be larger than that in the simple regression with only one constant term. Alternative
estimators have been proposed, all based on this principle of using two different sums
of squared residuals.14

There is a remaining complication. If there are any regressors that do not vary
within the groups, the LSDV estimator cannot be computed. For example, in a model
of family income or labor supply, one of the regressors might be a dummy variable
for location, family structure, or living arrangement. Any of these could be perfectly
collinear with the fixed effect for that family, which would prevent computation of the
LSDV estimator. In this case, it is still possible to estimate the random effects variance
components. Let [b, a] be any consistent estimator of [β,α], such as the ordinary least
squares estimator. Then, (13-30) provides a consistent estimator of mee = σ 2

ε + σ 2
u . The

mean squared residuals using a regression based only on the n group means provides a
consistent estimator of m∗∗ = σ 2

u + (σ 2
ε /T ), so we can use

σ̂ 2
ε = T

T − 1
(mee − m∗∗)

σ̂ 2
u = T

T − 1
m∗∗ − 1

T − 1
mee = ωm∗∗ + (1 − ω)mee,

where ω > 1. As before, this estimator can produce a negative estimate of σ 2
u that, once

again, calls the specification of the model into question. [Note, finally, that the residuals
in (13-29) and (13-30) could be based on the same coefficient vector.]

13.4.3 TESTING FOR RANDOM EFFECTS

Breusch and Pagan (1980) have devised a Lagrange multiplier test for the random
effects model based on the OLS residuals.15 For

H0: σ 2
u = 0 (or Corr[ηi t , ηis] = 0),

H1: σ 2
u #= 0,

14See, for example, Wallace and Hussain (1969), Maddala (1971), Fuller and Battese (1974), and Amemiya
(1971).
15We have focused thus far strictly on generalized least squares and moments based consistent estimation of
the variance components. The LM test is based on maximum likelihood estimation, instead. See, Maddala
(1971) and Balestra and Nerlove (1966, 2003) for this approach to estimation.
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Why use random effects?
• Random effects do not control for endogenous 

unobservables.
• Random effects require strict exogeneity of the 

shock, and hence orthogonality with the covariates.
• Fixed effects allow for a correlation between the 

effect and the covariates.
• Why use random effects?
– The variance of the fixed effects is not 

consistently estimated.
– If the covariates and the random effects are 

orthogonal, random effect estimation is more 
efficient.

Tuesday, March 6, 12



HAUSMAN TEST
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Hausman test
• Hausman test compares the coefficient 

estimates for the covariates in  the fixed 
effects framework and in the random 
effects framework:

• Null hypothesis: bFE = bRE.
• If the orthogonality of the covariates and 

of the effects is true (under H0), then both 
estimators are consistent and converge to 
the same value β.

• Under H0, the random effects estimator is 
more efficient (i.e. has smaller variance) 
than the fixed effects estimator.
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Same logic as for the IV OLS hausman test

• The statistic:

• follows a chi-squared distribution with 
K-1 degrees of freedom.

36
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The chi-squared test is based on the Wald criterion:

W = χ2[K − 1] = [b − β̂]′"̂−1[b − β̂]. (13-34)

For "̂, we use the estimated covariance matrices of the slope estimator in the LSDV
model and the estimated covariance matrix in the random effects model, excluding the
constant term. Under the null hypothesis, W has a limiting chi-squared distribution with
K − 1 degrees of freedom.

Example 13.5 Hausman Test
The Hausman test for the fixed and random effects regressions is based on the parts of the co-
efficient vectors and the asymptotic covariance matrices that correspond to the slopes in the
models, that is, ignoring the constant term(s). The coefficient estimates are given in Table 13.2.
The two estimated asymptotic covariance matrices are

Est. Var[bF E ] =

[

0.0008934 −0.0003178 −0.001884
−0.0003178 0.0002310 −0.0007686
−0.001884 −0.0007686 0.04068

]

TABLE 13.2 Random and Fixed Effects Estimates

Parameter Estimates

Specification β1 β2 β3 β4 R2 s2

No effects 9.517 0.88274 0.45398 −1.6275 0.98829 0.015528
(0.22924) (0.013255) (0.020304) (0.34530)

Firm effects Fixed effects
0.91930 0.41749 −1.0704 0.99743 0.0036125
(0.029890) (0.015199) (0.20169)

White(1) (0.019105) (0.013533) (0.21662)
White(2) (0.027977) (0.013802) (0.20372)

Fixed effects with autocorrelation ρ̂ = 0.5162
0.92975 0.38567 −1.22074 0.0019179
(0.033927) (0.0167409) (0.20174) s2/(1 − ρ̂2) =

0.002807

Random effects
9.6106 0.90412 0.42390 −1.0646 σ̂ 2

u = 0.0119158
(0.20277) (0.02462) (0.01375) (0.1993) σ̂ 2

ε = 0.00361262

Random effects with autocorrelation ρ̂ = 0.5162
10.139 0.91269 0.39123 −1.2074 σ̂ 2

u = 0.0268079
(0.2587) (0.027783) (0.016294) (0.19852) σ̂ 2

ε = 0.0037341

Fixed effectsFirm and time
effects 12.667 0.81725 0.16861 −0.88281 0.99845 0.0026727

(2.0811) (0.031851) (0.16348) (0.26174)

Random effects
9.799 0.84328 0.38760 −0.92943 σ̂ 2

u = 0.0142291
(0.87910) (0.025839) (0.06845) (0.25721) σ̂ 2

ε = 0.0026395
σ̂ 2

v = 0.0551958
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Implementation
• Reported by xtreg, re.

• Otherwise use “estimates store” and 
“hausman”.

• In practice report the Hausman test if 
using either random effects or fixed 
effects.

37
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TWO WAY FIXED EFFECTS
(ABOWD, KRAMARZ, 
MARGOLIS, 1999)
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Two way fixed effects
• Estimate the contribution of the 

industry, the firm, the CEO to firm 
performance/the CEO’s wage.

• Example: “Managing with style”, by 
Marianne Bertrand.
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yi,t = ✓i +  J(i,t) + "i,t

Two way fixed effects 
specification

• θi: the individual effect.
• ΨJ(i,t) : the firm effect.

• Covariates can be added.
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Y = D✓ + F + "

Matrix notation

• where D is the design matrix for the 
individual effects, F is the design 
matrix for the firm effects.

41
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Two options
• Either estimate the model as a model 

with two random effects, but with 
orthogonal effects.
– Advantage: easier to estimate, efficient if 

orthogonality is true. Estimate of the 
variances is unbiased.

– Problem: orthogonality is equivalent to 
random assignment (plausible?) and 
effects cannot be estimated one by one.

• Fixed effects estimation.

42
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Projection on the worker dimension

• Noting MD the projection on the worker 
dimension, then:

• Estimator of Ψ 
= (F’(1-MD)F)-1 F’(1-MD)Y

• As the number of individuals per firm 
converges to infinity, the vector of firm 
effects is a consistent estimator of the 
firm effects.
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Identification of the firm effects

• After a bit of algebra, it can be shown 
that:

• Estimator of Ψ 
= (1-mobility matrix)-1 times a vector

• Where the mobility matrix has the 
empirical probability of moving from 
one firm to another.

• Using the Frobenius-Perron theorem, 
1-mobility matrix is invertible if the 
mobility graph of firms is connex.
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Non connex graph of firms

45

This firm has only one CEO

2

1

3

CEO 1

CEO 2

CEO 3

CEO 4

4
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Projection on the worker 
dimension

• Similarly:

• Estimator of θ 
= (D’(1-MF)D)-1 D’(1-MF)Y
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Identification of the worker effects

• Typically issue is that the number of 
observations per worker is small and 
does not converge to infinity.

• Estimate is unbiased but not 
consistent.

• Variance of the estimate of the 
individual effect is approximately given 
by the CLT.
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Implementation of
the identification test

• ssc install a2group

• a2group, individual(ceoid) unit(firmid) 
generate(group)
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Estimation of the 
two way fixed effects model.

• ssc install a2reg.
• Make sure no variable is missing.
• a2reg y x1 ... xK, individual(ceoid) 

unit(firmid)
• Standard errors:

bootstrap, n(10): a2reg y x1 ... xK, 
individual(ceoid) unit(firmid).
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Estimation of the 
two way fixed effects model.

• Alternative: OLS with dummies.

• xi: regress y x1 .... xK i.ceoid i.firmid

• Gives standard errors in one step.
• But the variance-covariance matrix has 

dimension K+# of CEOS+# of firms !
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Threats to identification
• Correlation between the mobility of a CEO from one 

firm to another firm and the unobservable time-
varying shocks.

• If good CEOs tend to move to firms that experience 
an upward trend in their performance, the difference 
between good and bad CEOs will be overestimated.

• If good CEOs tend to move to firms that experience 
a downward trend in their performance, the 
difference between good and bad CEOs will be 
underestimated.
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This paper investigates whether and how individual managers affect corpo-
rate behavior and performance. We construct a manager-firm matched panel data
set which enables us to track the top managers across different firms over time.
We find that manager fixed effects matter for a wide range of corporate decisions.
A significant extent of the heterogeneity in investment, financial, and organiza-
tional practices of firms can be explained by the presence of manager fixed effects.
We identify specific patterns in managerial decision-making that appear to indi-
cate general differences in “style” across managers. Moreover, we show that
management style is significantly related to manager fixed effects in performance
and that managers with higher performance fixed effects receive higher compen-
sation and are more likely to be found in better governed firms. In a final step, we
tie back these findings to observable managerial characteristics. We find that
executives from earlier birth cohorts appear on average to be more conservative;
on the other hand, managers who hold an MBA degree seem to follow on average
more aggressive strategies.

I. INTRODUCTION

“In the old days I would have said it was capital, history, the name of the
bank. Garbage—it’s about the guy at the top. I am very much a process
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number of acquisitions, but slightly lower cash holdings and
leverage levels. It is, however, very similar to the average COM-
PUSTAT firm with respect to cash flow, investment levels, divi-
dend payouts, R&D, and SG&A.

Table II tabulates the nature of the executive transitions in
our sample. We separate three major executive categories: CEOs,
CFOs, and “Others.” The majority of the job titles in this “Others”
category correspond to operationally important positions: 44 per-
cent are subdivision CEOs or Presidents, 16 percent are Execu-
tive Vice-Presidents, and 12 percent are COOs; the rest are Vice-
Presidents and other more generic titles.

TABLE I
DESCRIPTIVE STATISTICS

Manager-firm
matched
sample

Manager
characteristics

sample Compustat

Mean St. dev. Mean St. dev. Mean
St.

dev.

Total sales 5606.5 11545.6 5333.3 10777.4 2649.6 5878.2
Investment 0.39 2.94 0.28 0.50 0.34 2.67
Average Tobin’s Q 2.40 3.85 2.03 2.05 1.70 1.43
Cash flow 0.44 1.91 0.45 2.10 0.43 2.47
N of acquisitions 0.77 1.48 0.65 1.40 0.36 1.45
Leverage 0.35 0.39 0.34 0.28 0.45 1.21
Interest coverage 35.0 875.1 40.5 663.1 27.6 166.2
Cash holdings 0.11 0.16 0.08 0.11 0.17 0.80
Dividends/earnings 0.11 0.79 0.14 1.05 0.16 0.25
N of diversifying acquisitions 0.32 1.09 0.28 0.91 0.12 0.63
R&D 0.05 0.07 0.04 0.14 0.03 0.06
Advertising 0.05 0.06 0.05 0.06 0.04 0.06
SG&A 0.26 0.98 0.21 0.19 0.18 0.64
Return on assets 0.16 0.11 0.19 0.15 0.10 0.09
Operating return on assets 0.09 0.12 0.11 0.22 0.08 0.13
Sample size 6766 10472 38489

a. “Manager-firm matched sample” refers to the set of firm-year observations for firms that have at least
one manager observed in multiple firms with at least a three-year stay at each firm. This sample includes
observations for these firms in the years in which they have other managers that we do not observe in
multiple firms (see subsection III.A for details). “Manager characteristics sample” refers to the set of
firm-year observations for which we can obtain information on the year of birth and educational background
of the CEO (see subsection VI.A for details). “Compustat” is a comparison sample of the 1500 largest listed
firms over the period 1969 to 1999. All samples exclude firms in the banking and insurance industry, as well
as regulated industries.

b. Details on the definition and construction of the variables reported in the table are available in the
Data Appendix.

c. Total sales are expressed in 1990 dollars.
d. Sample size refers to the maximum number of observations; not all variables are available for each

year and firm.
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Of the set of about 500 managers identified in our sample,

117 are individuals who move from a CEO position in one firm to
a CEO position in another firm; 4 are CEOs who move to CFO
positions; and 52 are CEOs who move to other top positions.
Among the set of executives starting as CFOs, we observe 7
becoming CEOs, 58 moving to another CFO position, and 30
moving to other top positions. Finally, among the 251 managers
who start in another top position, 106 become CEOs, and 145
move to another non-CEO, non-CFO position. Within this latter
group we found that more than 40 percent of the transitions are
moves from a position of subdivision CEO or subdivision presi-
dent in one firm to a similar position in another firm.

In the second row of each cell in Table II, we report the
fraction of moves that are between firms in different two-digit
industries.15 It is interesting to note that a large fraction of the
executive moves in our sample are between industries. For exam-
ple, 63 percent of the CEO to CEO moves are across different
two-digit industries, as are 71 percent of the CFO to CFO moves.
A relatively lower fraction of the moves from other top positions
to other top positions (42 percent) are across industries. These
patterns seem intuitive if ones believes that CEOs and CFOs
need relatively less industry and firm-specific knowledge and
instead rely more on general management skills.16

15. The industry classification is based on the primary SIC code of each firm,
as reported in COMPUSTAT.

16. See, for example, Fligstein [1990] for a discussion of this argument.

TABLE II
EXECUTIVE TRANSITIONS BETWEEN POSITIONS AND INDUSTRIES

to: CEO CFO Other

from:
CEO 117 4 52

63% 75% 69%
CFO 7 58 30

71% 71% 57%
Other 106 0 145

60% 42%

a. This table summarizes executives’ transitions across positions and industries in the manager-firm
matched panel data set (as described in subsection III.A and Table I). All transitions are across firms. The
first entry in each cell reports the number of transitions from the row position to the column position. The
second line in each cell reports the fraction of the transitions in that cell that are between different two-digit
industries.

b. “Other” refers to any job title other than CEO or CFO.
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IV. IS THERE HETEROGENEITY IN EXECUTIVE PRACTICES?

IV.A. Empirical Methodology

The nature of our identification strategy can be most easily
explained with an example. Consider the dividend payout ratio as
the corporate policy of interest. From a benchmark specification
we derive residual dividend payouts at the firm-year level after
controlling for any average differences across firms and years as
well as for any firm-year specific shock, such as an earnings
shock, that might affect the dividend payout of a firm. We then
ask how much of the variance in these residual dividend payouts
can be attributed to manager-specific effects.

More specifically, for each dependent variable of interest, we
propose to estimate the following regression:

(1) yit ! !t " "i " #Xit " $CEO " $CFO " $Others " %it,

where yit stands for one of the corporate policy variables, !t are
year fixed effects, "i are firm fixed effects, Xit represents a vector
of time-varying firm level controls, and %it is an error term. The
remaining variables in equation (1) are fixed effects for the man-
agers that we observe in multiple firms. Because we want to
separately study the effect of CEOs, CFOs, and other top execu-
tives on corporate policies, we create three different groups of
manager fixed effects: $CEO are fixed effects for the group of
managers who are CEOs in the last position we observe them in,
$CFO are fixed effects for the group of managers who are CFOs in
the last position we observe them in, and $Others are fixed effects
for the group of managers who are neither CEOs nor CFOs in the
last position we observe them in.17 Finally, when estimating
equation (1), we account for serial correlation by allowing for
clustering of the error term at the firm level.18

It is evident from equation (1) that the estimation of the
manager fixed effects is not possible for managers who never
leave a given company during our sample period. Consider, for
example, a specific manager who never switches companies and
advances only through internal promotions, maybe moving from

17. We also repeated all of the analyses below after separating CEO to CEO
moves, CEO to CFO moves, etc. The results were qualitatively similar to the more
aggregated results reported in the paper.

18. In subsection IV.C we propose two alternative estimation methods to deal
with serial correlation issues and better address possible issues regarding the
persistence of the manager fixed effects.
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TABLE III
EXECUTIVE EFFECTS ON INVESTMENT AND FINANCIAL POLICIES

Panel A: Investment policy
F-tests on fixed effects for

N
Adjusted

R2CEOs CFOs Other executives

Investment 6631 .91
Investment 16.74 (!.0001, 198) 6631 .94
Investment 19.39 (!.0001, 192) 53.48 (!.0001, 55) 8.45 (!.0001, 200) 6631 .96
Inv to Q sensitivity 6631 .95
Inv to Q sensitivity 17.87 (!.0001, 223) 6631 .97
Inv to Q sensitivity 5.33 (!.0001, 221) 9.40 (!.0001, 58) 20.29 (!.0001, 208) 6631 .98
Inv to CF sensitivity 6631 .97
Inv to CF sensitivity 2.00 (!.0001, 205) 6631 .98
Inv to CF sensitivity 0.94 (.7276, 194) 1.29 (.0760, 55) 1.28 (.0058, 199) 6631 .98
N of acquisitions 6593 .25
N of acquisitions 2.01 (!.0001, 204) 6593 .28
N of acquisitions 1.68 (!.0001, 199) 1.74 (.0006, 55) 4.08 (!.0001, 203) 6593 .36

Panel B: Financial policy
F-tests on fixed effects for

N
Adjusted

R2CEOs CFOs Other executives

Leverage 6563 .39
Leverage 0.99 (.5294, 203) 6563 .39
Leverage 0.86 (.9190, 199) 1.43 (.0225, 54) 1.21 (.0230, 203) 6563 .41
Interest coverage 6278 .31
Interest coverage 0.56 (.99, 193) 6278 .31
Interest coverage 0.35 (.99, 192) 13.85 (!.0001, 50) 2.61 (!.0001, 192) 6278 .41
Cash holdings 6592 .77
Cash holdings 2.52 (!.0001, 204) 6592 .78
Cash holdings 2.48 (!.0001, 201) 3.68 (!.0001, 54) 2.53 (!.0001, 202) 6592 .80
Dividends/earnings 6580 .65
Dividends/earnings 5.78 (!.0001, 203) 6580 .71
Dividends/earnings 4.95 (!.0001, 199) 1.07 (.3368, 54) 1.74 (!.0001, 203) 6580 .72

a. Sample is the manager-firm matched panel data set as described in subsection III.A and Table I.
Details on the definition and construction of the variables reported in the table are available in the Data
Appendix.

b. Reported in the table are the results from fixed effects panel regressions, where standard errors are
clustered at the firm level. For each dependent variable (as reported in column 1), the fixed effects included
are row 1: firm and year fixed effects; row 2: firm, year, and CEO fixed effects; row 3: firm, year, CEO, CFO,
and other executives fixed effects. Included in the “Investment to Q” and “Investment to cash flow” regres-
sions are interactions of these fixed effects with lagged Tobin’s Q and cash flow, respectively. Also the
“Investment,” “Investment to Q,” and “Investment to cash flow” regressions include lagged logarithm of total
assets, lagged Tobin’s Q, and cash flow. The “Number of Acquisitions” regressions include lagged logarithm
of total assets and return on assets. Each regression in Panel B contains return on assets, cash flow, and the
lagged logarithm of total assets.

c. Reported are the F-tests for the joint significance of the CEO fixed effects (column 2), CFO fixed effects
(column 3), and other executives fixed effects (column 4). For each F-test we report the value of the F-statistic,
the p-value, and the number of constraints. For the “Investment to Q” and “Investment to Cash Flow”
regressions, the F-tests are for the joint significance of the interactions between the manager fixed effects and
Tobin’s Q and cash flow, respectively. Column 5 reports the number of observations, and column 6 the
adjusted R2s for each regression.
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quartile of the distribution increases the rate of return on assets
by about 3 percent. In contrast, a manager in the bottom quartile
reduces the rate of return on assets by about 3 percent.

Also, the median manager fixed effects for most of the corpo-
rate variables are not different from zero. This is interesting as
one might have expected that the nature of the sample construc-
tion and the focus on outside hires might have led us to select a
different type of managers. This seems to indicate that this pos-
sible selection issue is not an important factor in our analysis.

IV.E. Management Styles

The previous section documents a wide degree of heteroge-
neity in the way managers conduct their businesses. We now
want to go a step further and investigate whether there are
overarching patterns in managerial decision-making. For exam-
ple, do some managers favor internal growth strategies while
others rely more on external growth, ceteris paribus? Or can we
observe that some managers overall are financially more aggres-
sive than others?

TABLE VI
SIZE DISTRIBUTION OF MANAGER FIXED EFFECTS

Median
Standard
deviation

25th
percentile

75th
percentile

Investment 0.00 2.80 !0.09 0.11
Inv to Q sensitivity !0.02 0.66 !0.16 0.12
Inv to CF sensitivity 0.04 1.01 !0.17 0.28
N of acquisitions !0.04 1.50 !0.54 0.41
Leverage 0.01 0.22 !0.05 0.09
Interest coverage 0.00 860.0 !56.0 51.7
Cash holdings 0.00 0.06 !0.03 0.02
Dividends/earnings !0.01 0.59 !0.13 0.11
N of diversifying acquis. !0.04 1.05 !0.28 0.21
R&D 0.00 0.04 !0.10 0.02
SG&A 0.00 0.66 !0.09 0.09
Advertising 0.00 0.04 !0.01 0.01
Return on assets 0.00 0.07 !0.03 0.03
Operating return on assets 0.00 0.08 !0.02 0.03

a. The fixed effects used in this table are retrieved from the regressions reported in Tables III and IV (row
3).

b. Column 1 reports the median fixed effect for each policy variable. Column 2 reports the standard
deviation of the fixed effects. Columns 3 and 4 report the fixed effects at the twenty-fifth percentile and
seventy-fifth percentile of the distribution, respectively.

c. Each fixed effect is weighted by the inverse of its standard error to account for estimation error.
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To answer these questions, we analyze the correlation struc-
ture between the manager specific fixed effects which we retrieve
from the set of regressions above. We form a data set that, for
each manager, contains the estimated fixed effects for the various
corporate variables. More precisely, the different variables in this
new data set are the manager fixed effects estimated in Tables III
and IV for the specification that includes all groups of managers
(row 3).

In practice, we propose to estimate regressions as follows:

(2) F.E.! y"j ! a " #F.E.! z"j " $j,

where j indexes managers, and y and z are any two corporate
policy variables. Note that the right-hand-side variable in equa-
tion (2) is an estimated coefficient which is noisy by definition.
This will lead to a downward bias in an OLS estimation of #.
Since we know the precision with which the fixed effects are
measured, we use a GLS estimation technique to account for the
measurement error in the right-hand-side variable. We weigh
each observation by the inverse of the standard error on the
independent variable, which we obtain from the first step
regressions.29

The results of this exercise are reported in Table VII. Each
element in this table corresponds to a different regression. The
average R2 for these regressions is about 10 percent; the maxi-
mum R2 is about 33 percent, while the minimum R2 is about 0.03
percent. A few interesting patterns seem to emerge from this
table. First, managers seem to differ in their approach toward
external versus internal growth. We see from the last two rows of
column 1 that there is a strong negative correlation between
capital expenditures, which can be interpreted as internal invest-
ments, and external growth through acquisitions and diversifica-
tion. In a similar vein, managers who follow expansion strategies
through external acquisitions and diversification engage in less
R&D expenditures. Row 7 of Table VII shows that the coefficients

29. We also repeated this analysis using a different technique to account for
measurement error in the estimated fixed effect. For each set of fixed effects we
formed averages of the observations by deciles (ranking observations by size), and
then regressed the transformed set of fixed effects on each other in the above-
described manner. This produces qualitatively similar results. Finally, we also
conducted a factor analysis for the full set of fixed effects. We were able to
distinguish three different eigenvectors. The factor loadings seem to support the
view that financial aggressiveness and internal versus external growth are two
important dimensions of style.
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from a regression of R&D on either of these variables are !0.01
with standard errors of 0.002. Moreover, capital expenditures and
R&D expenditures are significantly positively correlated.

Another interesting finding is that managers who are more
investment-Q sensitive also appear to be less investment-cash
sensitive. The coefficient on " in a regression of the investment to
Q fixed effects on the investment to cash flow fixed effects (column
2 and row 3 of Table VII) is !0.23 with a standard error of 0.11.
This suggests that managers may follow one of two strategies:
either use the firm’s market valuation or use the cash flow gen-
erated by operations as a benchmark for their investment deci-
sions. This result is interesting in light of the current debate on
the investment to cash flow sensitivity in firms. So far, most
research has analyzed differences in investment behavior across
firms along a financial constraint dimension. Our findings sug-

TABLE VII
RELATIONSHIP BETWEEN THE MANAGER FIXED EFFECTS

Investment Inv to Q Inv to CF
Cash

holdings Leverage R&D

Return
on

assets

Investment 0.00
(0.00)

Inv to Q sensitivity 6.8 0.03
(0.92) (0.01)

Inv to CF
sensitivity 0.02 !0.23 !0.01

(0.6) (0.11) (0.01)
Cash holdings !1.10 !0.79 !0.46 !0.12

(1.62) (1.71) (1.72) (0.05)
Leverage !0.39 !0.28 !0.63 !0.40 !0.02

(0.55) (0.59) (0.60) (0.17) (0.02)
R&D 0.07 0.08 !0.03 !0.23 !0.02 0.11

(0.00) (0.02) (0.01) (0.04) (0.01) (0.11)
Advertising 0.01 0.02 !0.01 !0.01 0.00 0.25 0.31

(0.01) (0.01) (0.01) (0.04) (0.01) (0.15) (0.15)
N of acquisitions !0.27 0.08 0.23 0.01 0.02 !0.01 !0.01

(0.11) (0.10) (0.10) (0.00) (0.01) (0.00) (0.00)
N of divers. acquis. !0.30 !0.14 0.14 0.01 0.01 !0.01 !0.01

(0.13) (0.15) (0.14) (0.01) (0.02) (0.00) (0.00)
SG&A !0.22 !0.30 0.10 0.54 0.06 !4.32 !3.36

(0.01) (0.04) (0.03) (0.56) (0.21) (0.90) (0.62)

a. Each entry in this table corresponds to a different regression.
b. Each entry reports the coefficient from a weighted regression of the fixed effects from the row variable

on the fixed effects from the column variable. Observations in these regressions are weighted by the inverse
of the standard error on the independent variable.

c. Coefficients that are significant at the 10 percent level are highlighted in bold.
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